

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 6th Semester Examination, 2021

DSE3-MATHEMATICS

Full Marks: 60

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

The question paper contains DSE3A and DSE3B. Candidates are required to answer any *one* from the *two* courses and they should mention it clearly on the Answer Book.

DSE3A

POINT SET TOPOLOGY

GROUP-A

								Answe	er <i>all</i> questi	ons				$2 \times 5 = 10$	
1.	1. (a) Show that sequences are continuous functions.													2	
	(b)	Show	that	\mathbb{R}	and	\mathbb{C}	with	their	respective	standard	topologies	cannot	be	2	
homeomorphic.															

- (c) The cofinite topology on a non-empty set X is the collection of subsets whose complements are either finite or all of X. Show that \mathbb{R} with usual topology is not compact but \mathbb{R} with cofinite topology is compact.
- (d) Find a condition (iff) on a given non-empty set X, so that it becomes compact.
- (e) Let $X = \{a, b, c, d\}$ be a topological space with the topology 2 $Y = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $A = \{b, c\}$. Find derived set and interior of A.

GROUP-B

Answer all questions

- 2. (a) Show that every infinite set has an enumerable subset.
 3 (b) Let A be an enumerable set. Let a ∈ A be fixed. Obtain the set A' = A \ {a}. Show that A and A' are equipotent.
 (c) Use above two results to prove that a set is infinite if and only if it admits a bijection 4 with a proper subset of itself.
- 3. (a) Let φ: ℝ → ℝ be continuous, consider the graph G_φ = {(x, φ(x)); x∈ ℝ} of φ as a subspace of ℝ². Show that G_φ is a homeomorphic copy of ℝ embedded in ℝ².

 $10 \times 3 = 30$

2

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHDSE3/2021

- (b) On the set of all positive integers N, show that the metric *d* defined as 3+2+1 $d(m, n) = \left|\frac{1}{m} - \frac{1}{n}\right|, m, n \in \mathbb{N}$ is equivalent to the discrete metric. Show that N is complete with respect to discrete metric, whereas it is incomplete with respect to *d*.
- 4. Let *N* denote the set of all null sequences of real numbers, that is $N = \{(x_n)_{n \in \mathbb{N}} : 5+5 x_n \to 0\}$. Find closure \overline{N} of *N* in \mathbb{R}^{ω} in both box and product topologies, where \mathbb{R}^{ω} denotes the product of countable copies of \mathbb{R} .

GROUP-C

Answer *all* questions $5 \times 2 = 10$

- 5. A topological space is called a Hausdorff space if any two distinct points in the space can be separated by two disjoint open sets. Show that a topological space X is Hausdorff if and only if the diagonal $\Delta = \{(x, x) : x \in X\}$ is closed in $X \times X$.
- 6. Let $p: X \to Y$ be a closed, continuous and surjective map such that for every point 5 $y \in Y$, $p^{-1}\{y\}$ is compact in *X*. Show that if *Y* is compact, then *X* is compact.

GROUP-D

Answer *all* questions

7. (a) Investigate the convergence and the possible limit(s) of the sequence $\left\{x_n = \frac{1}{n}\right\}$ in the cofinite topology on \mathbb{R} .

- (b) Show that a topological space is connected if and only if every non-empty proper 3 subset has a nonempty boundary.
- 8. Let X be a connected topological space and $f: X \to \mathbb{R}$ is a non-constant continuous 5 map. Show that X is an uncountable set.

DSE3B

BOOLEAN ALGEBRA AND AUTOMATA THEORY

GROUP-A

Answer *all* questions

 $2 \times 5 = 10$

5

 $5 \times 2 = 10$

- 1. (a) What is the language generated by the Grammar ({*S*}, {*a*, *b*}, {*S* \rightarrow *aS*, *S* \rightarrow *bS*, *S* \rightarrow *e*}, *S*)?
 - (b) Determine all the sub-lattices of D_{30} that contains at least four elements.

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHDSE3/2021

- (c) Draw the logic circuit (A'B)' + (A+C)'.
- (d) Show that the weak distributive law $a \lor (b \land c) \le (a \lor b) \land (a \lor c)$ holds for any lattice *L*.
- (e) Prove that $L = \{a^n b^n c^n \mid n \ge 1\}$ is not a context free language?

GROUP-B
$$10 \times 3 = 30$$

- 2. (a) For the Grammar = {V, T, P, S}, where $S \rightarrow 0B, A \rightarrow 1AA | \epsilon, B \rightarrow 0AA$, construct a 4+3+3 parse tree.
 - (b) Convert the given NFA to equivalent DFA.

δ	0	1
$\rightarrow p$	$\{p,q\}$	$\{p\}$
q	Ø	$\{r\}$
<i>r</i> *	$\{p, r\}$	$\{q\}$

- (c) Design a PDA for recognizing the language of palindromes over the alphabet {0, 1}. Draw the computation tree showing all possible moves for the strings 00100 and 00101.
- 3. (a) Let *E* and *F* be finite ordered sets. If $f: E \to F$ is a bijection, prove that *f* is an order 3+2+3+2 isomorphism if and only if $(\forall a, b \in L) \ x \prec y \Leftrightarrow f(x) \prec f(y)$, where $x \prec y$ means 'y covers x'.
 - (b) In a distributive lattice (A, \leq) , if $a \wedge x = a \wedge y$ and $a \vee x = a \vee y$ for some *a* then show that x = y.
 - (c) Suppose P be an ordered set with the property: for any $x, y \in P$, $x \land y = g. l. b. (x, y)$ and $x \lor y = l. u. b. (x, y)$. Prove that (P, \land, \lor) is a lattice.
 - (d) Show that for any elements a, b, c in a modular lattice,

 $(a \lor b) \land c = b \land c$ implies $(c \lor b) \land a = b \lor a$.

4. (a) Using the laws of Boolean Algebra, show that

[x'.(x+y)]' + [y.(y+x')]' + [y'.(y'+x)]' = 1

- (b) Let E = xy' + xyz' + x'yz'. Prove that (i) xz' + E = E, (ii) $x + E \neq E$.
- (c) Draw the logic circuit that represents the following Boolean function. Find also an equivalent simpler circuit.

x	У	Z	f(x, y, z)
1	1	1	0
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	0
0	0	0	0

3+3+4

GROUP-C
$$10 \times 1 = 10$$

5

5

5. (a) Design a DFA that accepts the following languages:

 $L_1 = \{x \in \{0, 1\}^* : x \text{ ends in } 00\}$ and $L_2 = \{x \in \{0, 1\}^* : x \text{ contains three consecutive } 0' s\}.$

(b) Consider the bounded lattice L in the following figure:

- (i) Find the complements, if they exist, of e and f.
- (ii) Is *L* distributive?
- (iii) Describe the isomorphisms of L with itself.

GROUP-D
$$10 \times 1 = 10$$

6. (a) Use Karnaugh maps to redesign the following logic circuit so that it becomes a 6+4 minimal AND-OR Circuit.

(b) For $\sum = \{a, b\}$, design a Turing machine that accepts $L = \{a^n b^n : n \ge 1\}$. Compute an ID for the string *aabb*.