

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 6th Semester Examination, 2021

DSE3-MATHEMATICS

ASSIGNMENT
The figures in the margin indicate full marks. All symbols are of usual significance.

The question paper contains DSE3A and DSE3B. Candidates are required to answer any one from the two courses and they should mention it clearly on the Answer Book.

DSE3A

POINT SET TOPOLOGY

GROUP-A

Answer all questions
 $2 \times 5=10$

1. (a) Show that sequences are continuous functions.
(b) Show that \mathbb{R} and \mathbb{C} with their respective standard topologies cannot be 2 homeomorphic.
(c) The cofinite topology on a non-empty set X is the collection of subsets whose complements are either finite or all of X. Show that \mathbb{R} with usual topology is not compact but \mathbb{R} with cofinite topology is compact.
(d) Find a condition (iff) on a given non-empty set X, so that it becomes compact.2
(e) Let $X=\{a, b, c, d\}$ be a topological space with the topology $Y=\{\phi,\{a\},\{b\},\{a, b\}, X\}$ and $A=\{b, c\}$. Find derived set and interior of A.

GROUP-B

Answer all questions

2. (a) Show that every infinite set has an enumerable subset.
(b) Let A be an enumerable set. Let $a \in A$ be fixed. Obtain the set $A^{\prime}=A \backslash\{a\}$. Show that A and A^{\prime} are equipotent.
(c) Use above two results to prove that a set is infinite if and only if it admits a bijection with a proper subset of itself.
3. (a) Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be continuous, consider the graph $G_{\phi}=\{(x, \phi(x)) ; x \in \mathbb{R}\}$ of ϕ as a subspace of \mathbb{R}^{2}. Show that G_{ϕ} is a homeomorphic copy of \mathbb{R} embedded in \mathbb{R}^{2}.
(b) On the set of all positive integers \mathbb{N}, show that the metric d defined as $d(m, n)=\left|\frac{1}{m}-\frac{1}{n}\right|, m, n \in \mathbb{N}$ is equivalent to the discrete metric. Show that \mathbb{N} is complete with respect to discrete metric, whereas it is incomplete with respect to d.
4. Let N denote the set of all null sequences of real numbers, that is $N=\left\{\left(x_{n}\right)_{n \in \mathbb{N}}\right.$: $\left.x_{n} \rightarrow 0\right\}$. Find closure \bar{N} of N in \mathbb{R}^{ω} in both box and product topologies, where \mathbb{R}^{ω} denotes the product of countable copies of \mathbb{R}.

GROUP-C

Answer all questions

5. A topological space is called a Hausdorff space if any two distinct points in the space can be separated by two disjoint open sets. Show that a topological space X is Hausdorff if and only if the diagonal $\Delta=\{(x, x): x \in X\}$ is closed in $X \times X$.
6. Let $p: X \rightarrow Y$ be a closed, continuous and surjective map such that for every point $y \in Y, p^{-1}\{y\}$ is compact in X. Show that if Y is compact, then X is compact.

GROUP-D

Answer all questions

7. (a) Investigate the convergence and the possible limit(s) of the sequence $\left\{x_{n}=\frac{1}{n}\right\}$ in the cofinite topology on \mathbb{R}.
(b) Show that a topological space is connected if and only if every non-empty proper subset has a nonempty boundary.
8. Let X be a connected topological space and $f: X \longrightarrow \mathbb{R}$ is a non-constant continuous map. Show that X is an uncountable set.

DSE3B

BOOLEAN ALGEBRA AND AUTOMATA THEORY

GROUP-A

Answer all questions

1. (a) What is the language generated by the Grammar $(\{S\},\{a, b\},\{S \rightarrow a S, S \rightarrow b S$, $S \rightarrow \epsilon\}, S)$?
(b) Determine all the sub-lattices of D_{30} that contains at least four elements.
(c) Draw the logic circuit $\left(A^{\prime} B\right)^{\prime}+(A+C)^{\prime}$.
(d) Show that the weak distributive law $a \vee(b \wedge c) \leq(a \vee b) \wedge(a \vee c)$ holds for any lattice L.
(e) Prove that $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ is not a context free language?

GROUP-B

2. (a) For the Grammar $=\{V, T, P, S\}$, where $S \rightarrow 0 B, A \rightarrow 1 A A \mid \epsilon, B \rightarrow 0 A A$, construct a parse tree.
(b) Convert the given NFA to equivalent DFA.

δ	0	1
$\rightarrow p$	$\{p, q\}$	$\{p\}$
q	\emptyset	$\{r\}$
r^{*}	$\{p, r\}$	$\{q\}$

(c) Design a PDA for recognizing the language of palindromes over the alphabet $\{0,1\}$. Draw the computation tree showing all possible moves for the strings 00100 and 00101.
3. (a) Let E and F be finite ordered sets. If $f: E \rightarrow F$ is a bijection, prove that f is an order isomorphism if and only if $(\forall a, b \in L) x \prec y \Leftrightarrow f(x) \prec f(y)$, where $x \prec y$ means ' y covers x '.
(b) In a distributive lattice (A, \leq), if $a \wedge x=a \wedge y$ and $a \vee x=a \vee y$ for some a then show that $x=y$.
(c) Suppose P be an ordered set with the property: for any $x, y \in P$, $x \wedge y=$ g.l. b. (x, y) and $x \vee y=1$. u.b. (x, y). Prove that (P, \wedge, \vee) is a lattice.
(d) Show that for any elements a, b, c in a modular lattice,

$$
(a \vee b) \wedge c=b \wedge c \text { implies }(c \vee b) \wedge a=b \vee a .
$$

4. (a) Using the laws of Boolean Algebra, show that

$$
\left[x^{\prime} \cdot(x+y)\right]^{\prime}+\left[y \cdot\left(y+x^{\prime}\right)\right]^{\prime}+\left[y^{\prime} \cdot\left(y^{\prime}+x\right)\right]^{\prime}=1
$$

(b) Let $E=x y^{\prime}+x y z^{\prime}+x^{\prime} y z^{\prime}$. Prove that (i) $x z^{\prime}+E=E$, (ii) $x+E \neq E$.
(c) Draw the logic circuit that represents the following Boolean function. Find also an equivalent simpler circuit.

x	y	z	$f(x, y, z)$
1	1	1	0
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	0
0	0	0	0

GROUP-C

5. (a) Design a DFA that accepts the following languages:
$L_{1}=\left\{x \in\{0,1\}^{*}: x\right.$ ends in 00$\}$ and $L_{2}=\left\{x \in\{0,1\}^{*}: x\right.$ contains three consecutive $\left.0^{\prime} \mathrm{s}\right\}$.
(b) Consider the bounded lattice L in the following figure:

(i) Find the complements, if they exist, of e and f.
(ii) Is L distributive?
(iii) Describe the isomorphisms of L with itself.

GROUP-D

6. (a) Use Karnaugh maps to redesign the following logic circuit so that it becomes a minimal AND-OR Circuit.

(b) For $\sum=\{a, b\}$, design a Turing machine that accepts $L=\left\{a^{n} b^{n}: n \geq 1\right\}$. Compute an ID for the string $a a b b$.
